5  Database

5.1 Database naming conventions

There are only two hard things in Computer Science: cache invalidation and naming things. – Phil Karlton (Netscape architect)

We’re circling the wagons to come up with the best conventions for naming. Here are some ideas:

5.1.1 Name tables

  • Table names are singular and use all lower case.

5.1.2 Name columns

  • To name columns, use snake-case (i.e., lower-case with underscores) so as to prevent the need to quote SQL statements. (TIP: Use janitor::clean_names() to convert a table.)

  • Unique identifiers are suffixed with:

    • *_id for unique integer keys;
    • *_uuid for universally unique identifiers as defined by RFC 4122 and stored in Postgres as UUID Type.
    • *_key for unique string keys;
    • *_seq for auto-incrementing sequence integer keys.
  • Suffix with units where applicable (e.g., *_m for meters, *_km for kilometers, degc for degrees Celsius). See units vignette.

  • Set geometry column to geom (used by PostGIS spatial extension). If the table has multiple geometry columns, use geom for the default geometry column and geom_{type} for additional geometry columns (e.g., geom_point, geom_line, geom_polygon).

5.2 Use Unicode for text

The default character encoding for Postgresql is unicode (UTF8), which allows for international characters, accents and special characters. Improper encoding can royally mess up basic text.

Logging into the server, we can see this with the following command:

docker exec -it postgis psql -l
                                  List of databases
        Name        | Owner | Encoding |  Collate   |   Ctype    | Access privileges 
--------------------+-------+----------+------------+------------+-------------------
 gis                | admin | UTF8     | en_US.utf8 | en_US.utf8 | =Tc/admin        +
                    |       |          |            |            | admin=CTc/admin  +
                    |       |          |            |            | ro_user=c/admin
 lter_core_metabase | admin | UTF8     | en_US.utf8 | en_US.utf8 | =Tc/admin        +
                    |       |          |            |            | admin=CTc/admin  +
                    |       |          |            |            | rw_user=c/admin
 postgres           | admin | UTF8     | en_US.utf8 | en_US.utf8 | 
 template0          | admin | UTF8     | en_US.utf8 | en_US.utf8 | =c/admin         +
                    |       |          |            |            | admin=CTc/admin
 template1          | admin | UTF8     | en_US.utf8 | en_US.utf8 | =c/admin         +
                    |       |          |            |            | admin=CTc/admin
 template_postgis   | admin | UTF8     | en_US.utf8 | en_US.utf8 | 
(6 rows)

Use Unicode (utf-8 in Python or UTF8 in Postgresql) encoding for all database text values to support international characters and documentation (i.e., tabs, etc for markdown conversion).

  • In Python, use pandas to read (read_csv()) and write (to_csv()) with UTF-8 encoding (i.e., encoding='utf-8').:

    import pandas as pd
    from sqlalchemy import create_engine
    engine = create_engine('postgresql://user:password@localhost:5432/dbname')
    
    # read from a csv file
    df = pd.read_csv('file.csv', encoding='utf-8')
    
    # write to PostgreSQL
    df.to_sql('table_name', engine, if_exists='replace', index=False, method='multi', chunksize=1000, encoding='utf-8')
    
    # read from PostgreSQL
    df = pd.read_sql('SELECT * FROM table_name', engine, encoding='utf-8')
    
    # write to a csv file with UTF-8 encoding
    df.to_csv('file.csv', index=False, encoding='utf-8')
  • In R, use readr to read (read_csv()) and write (write_excel_csv()) to force UTF-8 encoding.

    library(readr)
    library(DBI)
    library(RPostgres)
    
    # connect to PostgreSQL
    con <- dbConnect(RPostgres::Postgres(), dbname = "dbname", host = "localhost", port = 5432, user = "user", password = "password")
    
    # read from a csv file
    df <- read_csv('file.csv', locale = locale(encoding = 'UTF-8'))  # explicit
    df <- read_csv('file.csv')                                       # implicit
    
    # write to PostgreSQL
    dbWriteTable(con, 'table_name', df, overwrite = TRUE)
    
    # read from PostgreSQL
    df <- dbReadTable(con, 'table_name')
    
    # write to a csv file with UTF-8 encoding
    write_excel_csv(df, 'file.csv', locale = locale(encoding = 'UTF-8'))  # explicit
    write_excel_csv(df, 'file.csv')                                       # implicit

5.3 Integrated database ingestion strategy

5.3.1 Overview

The CalCOFI database uses a two-schema strategy for development and production:

  • dev schema: Development schema where new datasets, tables, fields, and relationships are ingested and QA/QC’d. This schema is recreated fresh with each ingestion run using the master ingestion script.
  • prod schema: Production schema for stable, versioned data used by public APIs, apps, and data portals (OBIS, EDI, ERDDAP). Once dev is validated, it’s copied to prod with a version number.

5.3.2 Master ingestion workflow

All datasets are ingested using a single master Quarto script calcofi4db/inst/ingest.qmd that:

  1. Drops and recreates the dev schema (fresh start each run)
  2. Ingests multiple datasets from Google Drive source files (CSV, potentially SHP/NC in future)
  3. Applies transformations using redefinition files (tbls_redefine.csv, flds_redefine.csv)
  4. Creates relationships (primary keys, foreign keys, indexes)
  5. Records schema version with metadata in schema_version table

Each dataset section in the master script handles:

  • Reading CSV files from Google Drive
  • Transforming data according to redefinition rules
  • Loading into database tables
  • Adding table/field comments with metadata
flowchart TB
    %% Node definitions
    gd[("`<b>Source Data</b>
          Google Drive:
          calcofi/data/{provider}/{dataset}/*.csv`")]
    iw["<b>Ingest Workflow</b>
        workflows: ingest_{provider}_{dataset}.qmd"]
    dd["<b>Data Definitions</b>
        workflows: /ingest/{provider}/{dataset}/:
        <ul>
          <li>tbls_redefine.csv</li>
          <li>flds_redefine.csv</li>
        </ul>"]
    db[("<b>Database</b>")]
    api["<b>API Endpoint</b>
         /db_tables
         /db_columns"]
    catalog["<b>R Function</b>
             calcofi4r::cc_db_catalog()"]
    eml["<b>Publish Workflow</b>
      workflows: publish_{dataset}_{portal}.qmd
      with {portal}s:
      <ul>
        <li>erddap</li>
        <li>edi</li>
        <li>obis</li>
        <li>ncei</li>
      </ul>"]

    %% Edge definitions
    gd --> iw
    iw -->|"1 auto-generated"| dd
    dd -->|"2 manual edit"| iw
    iw -->|"3 data"| db
    iw --> comments
    comments -->|"4 metadata"| db
    db --> api
    api --> catalog
    db --> eml

    %% Comments subgraph with internal nodes
    subgraph comments["<b>Database Comments</b>
              (stored as text in JSON format to differentiate elements)"]
        direction TB
        h["hideme"]:::hidden
        h~~~tbl
        h~~~fld
        tbl["per <em>Table</em>:
            <ul>
              <li>description</li>
              <li>source (<em>linked</em>)</li>
              <li>source_created (<em>datetime</em>)</li>
              <li>workflow (<em>linked</em>)</li>
              <li>workflow_ingested (<em>datetime</em>)</li>
            </ul>"]
        fld["per <em>Field</em>:
            <ul>
              <li>description</li>
              <li>units (SI)`</li>
            </ul>"]
    end

    %% Clickable links
    click gd "https://drive.google.com/drive/folders/1xxdWa4mWkmfkJUQsHxERTp9eBBXBMbV7" "calcofi folder - Google Drive"
    click api "https://api.calcofi.io/db_tables" "API endpoint</b>"
    click catalog "https://calcofi.io/calcofi4r/reference/cc_db_catalog.html" "R package function"

    %% Styling
    classDef source fill:#f9f9f9,stroke:#000,stroke-width:2px,color:#000
    classDef process fill:#a3e0f2,stroke:#000,stroke-width:2px,color:#000
    classDef eml fill:#F0FDF4,stroke:#22C55E,stroke-width:2px,color:#000,text-align:left
    classDef data fill:#ffbe75,stroke:#000,stroke-width:2px,color:#000
    classDef api fill:#9ad294,stroke:#000,stroke-width:2px,color:#000
    classDef meta fill:#c9a6db,stroke:#000,stroke-width:2px,color:#000,text-align:left
    classDef hidden display: none;

    class gd source
    class dd,comments,tbl,fld meta
    class iw process
    class db data
    class api,catalog api
    class tbl,fld li
    class eml eml
Figure 5.1: Integrated database ingestion scheme.

5.3.3 Using calcofi4db package

The calcofi4db package provides streamlined functions for dataset ingestion:

library(calcofi4db)
library(DBI)
library(RPostgres)

# Connect to database
con <- dbConnect(
  Postgres(),
  dbname = "gis",
  host = "localhost",
  port = 5432,
  user = "admin",
  password = "postgres"
)

# Read CSV files and metadata
d <- read_csv_files(
  provider = "swfsc.noaa.gov",
  dataset = "calcofi-db"
)

# Transform data according to redefinitions
transformed_data <- transform_data(d)

# Ingest into dev schema
ingest_csv_to_db(
  con = con,
  schema = "dev",
  transformed_data = transformed_data,
  d_flds_rd = d$d_flds_rd,
  d_gdata = d$d_gdata,
  workflow_info = d$workflow_info
)

# Record schema version
record_schema_version(
  con = con,
  schema = "dev",
  version = "1.0.0",
  description = "Initial ingestion of NOAA CalCOFI Database",
  script_permalink = "https://github.com/CalCOFI/calcofi4db/blob/main/inst/ingest.qmd"
)

5.3.4 Schema versioning

Each successful ingestion creates a new schema version recorded in the schema_version table with:

  • version: Semantic version number (e.g., “1.0.0”, “1.1.0”)
  • description: Changes introduced in this version
  • date_created: Timestamp of ingestion
  • script_permalink: GitHub permalink to the versioned ingestion script

Versions are also archived as SQL dumps in Google Drive for reproducibility.

5.3.5 Metadata and documentation

After ingestion, metadata is stored in PostgreSQL COMMENTs as JSON at the table level:

  • description: General description and row uniqueness
  • source: CSV file link to Google Drive
  • source_created: Source file creation timestamp
  • workflow: Link to rendered ingestion script
  • workflow_ingested: Ingestion timestamp

And at the field level:

  • description: Field description
  • units: SI units where applicable

These comments are exposed via the API db_tables endpoint and rendered with calcofi4r::cc_db_catalog.

5.3.6 Publishing to portals

After prod schema is versioned, additional workflows publish data to Portals (ERDDAP, EDI, OBIS, NCEI) using ecological metadata language (EML) via the EML R package, pulling metadata directly from database comments.

5.3.7 OR Describe tables and columns directly

  • Use the COMMENT clause to add descriptions to tables and columns, either through the GUI pgadmin.calcofi.io (by right-clicking on the table or column and selecting Properties) or with SQL. For example:

    COMMENT ON TABLE public.aoi_fed_sanctuaries IS 'areas of interest (`aoi`) polygons for federal **National Marine Sanctuaries**; loaded by _workflow_ [load_sanctuaries](https://calcofi.io/workflows/load_sanctuaries.html)';
  • Note the use of markdown for including links and formatting (e.g., bold, code, italics), such that the above SQL will render like so:

    areas of interest (aoi) polygons for federal National Marine Sanctuaries; loaded by workflow load_sanctuaries

  • It is especially helpful to link to any workflows that are responsible for the ingesting or updating of the input data.

5.3.8 Display tables and columns with metadata

  • These descriptions can be viewed in the CalCOFI API api.calcofi.io as CSV tables (see code in calcofi/api: plumber.R):
    • api.calcofi.io/db_tables
      fields:
      • schema: (only “public” so far)
      • table_type: “table”, “view”, or “materialized view” (none yet)
      • table: name of table
      • table_description: description of table (possibly in markdown)
    • api.calcofi.io/db_columns
      fields:
      • schema: (only “public” so far)
      • table_type: “table”, “view”, or “materialized view” (none yet)
      • table: name of table
      • column: name of column
      • column_type: data type of column
      • column_description: description of column (possibly in markdown)
  • Fetch and display these descriptions into an interactive table with calcofi4r::cc_db_catalog().

5.4 Relationships between tables

5.5 Spatial Tips